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Description 

This project was inspired from the dinosaur game that appears whenever you try to access a 

webpage on Google Chrome without an internet connection. In this game, the player is a T-rex 

that continuously runs across a black-and-white landscape full of obstacles by jumping. As the 

game progresses, the speed gradually increases until the user hits an obstacle, resulting in a 

game over. Our group decided to make a computer that runs an analog version of this game. 

Our version of the game plays on a small array of 4 LEDs. The leftmost LED indicates the player, 

while the right 3 LEDs represent possible positions of obstacles. All obstacles will start at the 

right most LED and move towards the left LED by LED. To avoid an obstacle, push a button when 

the obstacle is at the 2nd left most LED. If you fail to, your player LED will turn off and the game 

ends. Obstacles will come at set intervals of time. Milestone 1 focuses on implementing the 

jumping and timing aspect of the game, which is done via an astable multivibrator and AND 

gate. This ensures that players can only jump at specific times and will stay in the air for exactly 

one cycle. Milestone 2 focuses on creating memory for the game using CMOS logic and 

electronic switches. This creates the gameplay loop, where obstacles move across the screen 

without player inputs. Milestone 3 focuses on taking the previous parts of the game and 

integrating them to create a seamless gameplay experience. A block diagram containing the 

elements used in the milestones can be found in Figure 1, Figure 2, and Figure 3 on the next 

page.  

 

https://drive.google.com/drive/folders/1afnUuADdlgrgrBGpBkAYZYtWzEtd1bnT?usp=sharing


Block Diagram: 

 

Figure 1: MS1 Block Diagram 

 

Figure 2: MS2 Block Diagram 

 

Figure 3: MS3 Block Diagram  



Schematic: 

 

Figure 4: LTspice schematic of the entire Milestone 1 

Figure 4 starts with an astable multivibrator on the left that has an output labeled CLK. This 

feeds to our diode AND gate on the right, composed of D1 and D2. V+, a 5V supply, is connected 

through R5, our load in this case. V+ The schematic does not contain LEDs, which aren’t 

accurately represented in LTSpice. The CLOCK LED has no replacement, while JUMP LED is 

replaced by R5. 

 



 

Figure 5: LTSpice schematic of entire Milestone 2 

Figure 5 shows multiple CMOS logic gates, which are fed with an input D and an enabled clock 

CLK. They output Q and Qnot. The electric switch and LED are not represented on the LTSpice 

schematic, as simply probing Q will get the necessary data points. 



 

Figure 6: LTSpice schematic of entire Milestone 3 

Figure 6 shows multiple AND gates constructed from a NAND and a NOT made using RTL logic 

with BJT transistors and resistors. Vcc indicates the clock signal, and LED the LEDs that will be lit 

up by the signal 

High Level Description of Application 

Figure 4 implements a jump switch to be used for a side scrolling platformer game. The 

command to jump is sent by the flick of a switch. To ensure that the game has time to process 

the jump, the jump command can only be sent when the clock signal is HIGH. This is done using 

an AND gate. The AND gate only sends the jump signal through when both the clock signal is 



HIGH and the switch is in the ON position. A CLOCK LED exists to show that the clock is in its 

HIGH state and that flicking the switch ON will send the jump command. A JUMP LED exists to 

show that the jump command is received. 

Figure 5 implements memory. During the high clock period, Q follows D. When the clock cycles 

low, whatever state Q was in remains locked until the clock cycles high again. This ensures 

things are always the same while our circuit is calculating the next state based on the current 

state. Input D is currently controlled by a switch, but will later be voltage from the previous 

clock cycle. An LED is attached to output Q to show when the Q state is high. 

Figure 6 shows the entire game, a series of AND gates and a clock. It is simpler than the previous 

milestone as most of the complicated circuitry was moved to Arduino code. Each and-gate 

receives input from which light was on previously as inputs, and from there outputs the next 

light that should be on. These lights represent obstacles. If light 1(only the first and gate) was on 

previously, then light 2(only the second and gate) will be on next. if light 2, then light 3, and so 

on and so forth in a cycle. Each state switch happens on a rising clock edge where all of the 

states held during the falling clock get checked and processed to the next state. While this is 

happening, a button where you can light up a jump LED lays on the side, ready to make you 

jump over an oncoming obstacle. The game checks repeatedly if LED3 is on, and if you jumped 

while LED3 was on. If you didn’t, you would lose and the clock signal would stop being read. 

 



Description of Related Pre-existing Applications 

In order to synchronize things, computers take inputs at specific intervals. This input is then put 

into a buffer, where the inputs will be processed and their corresponding outputs given. To 

perform the actual logic that maps inputs to outputs, most home brew computers utilize 

transistor to transistor logic. Transistors are able to switch on and off at very high speeds, 

allowing for many operations a second. This is important for complex logic that may require 

multiple operations. Afterwards, the on and off states of different combinations of transistors 

are used to indicate states. These states are mapped to outputs by enabling or disabling specific 

wires in an output bus that usually connects to a screen that displays information based on the 

transistor states. The transistors are usually configured as edge-triggered bistables, otherwise 

known as flip-flops/latches. These things contain memory, meaning they will store the same 

state unless an input is applied. A clock, usually in the form of a dedicated clock IC is used to 

provide a consistent interval for the transistors to check if they need to change states. In our 

case, our “screen” is our 4 LED array that represents the positions of obstacles and our player. 

Astable Multivibrator 

 

Figure 7: Example Astable Multivibrator 

A multivibrator generates a square wave that can be used to provide periodic input. For the 

purpose of this project, the astable multivibrator (MV) is utilized to make a clock. The MV 

alternates between high voltage and low voltage, with each rise into high voltage being 



considered 1 tick of our clock. This helps sync our game, ensuring any and all events happen 

consistently.  

LF351 Op-Amp 

 

Figure 8: LF351 Datasheet Schematic 

The op-amp of choice for this lab is the LF351. It is configured as an astable multivibrator, 

meaning it transitions between 2 states at constant time intervals. The LF351 was chosen 

because of its high slew rate of 13V/ S, enabling us to have more responsive changes. µ

Diode-based Logic AND-gate 

  

Figure97: Diode AND-Gate schematics 



Figure 9 shows an example of what a Diode AND-gate would look like isolated from our main 

circuit. This circuit would contain a power supply and 2 diodes that are connected in reverse 

biased configuration would allow current to flow forward. We chose to do a logic AND because 

it has to be configured with our input stage where when pressed, it can only send an output 

when both clocks are high and are pressed. Diode AND-gate works as any and-gate logic with its 

truth table, which this design choice will enable our MS1 game logic. 

1N914 Diode 

 

Figure 10: Small Signal Fast Switching Diodes 

Figure 10 shows a type of diode that we will be using which is the 1N914 diode. It was chosen 

because of its availability in our kit and the fact that it met all our basic requirements of acting 

as a one way switch. 

 

2N7000 Transistor 

 

Figure 11: 2N7000 N-channel MOSFET 



Figure 11 shows the type of transistor that we will be using which is the 2N7000 transistor. It 

was chosen because of its availability in our kit and meets the requirements that are needed for 

parts of our logic of the overall circuit.  

ALD1105 Transistor  

 

Figure 12: ALD1105 Dual CMOS chip 

Figure 12 is the internal schematic for the ALD1105 dual cmos chip that we used extensively 

throughout this milestone. Its 2 NMOS and 2 PMOS configuration is perfect to fit one NAND 

gate per chip. 

CMOS-based Logic NAND-gate 

 

Figure 13: CMOS NAND Gate 



Figure 13 shows an example of what a CMOS NAND-gate would look like isolated from our main 

circuit. This circuit would contain 2 power supply (Vdd) and a couple of mosfets. We chose to do 

a logic NAND because it has to be configured with our stages to handle the game logic as well as 

the memey stuff from the flip flop. The NAND gate works with our design due to its truth table 

for MS2.  

CMOS-based Logic NOT-gate 

 

Figure 14: CMOS Inverter 

Figure 14 shows an example of what a CMOS Inventor (basically NOT-gate) would look like 

isolated from our main circuit. As shown from the figure, the input is applied to the gate 

terminal of the two CMOS transistors, and the output is connected to their drain terminals. We 

chose to do this because as a way to communicate between the user inputs stage and the 

memory.  



2N3904 NPN Transistor 

 

Figure 15: BJT transistor  

Figure 15 is the only BJT transistor that is needed for the circuit as it is a semiconductor device 

that operates with charge carriers, holes and electrons to amplify our circuit. We are mainly 

operating in NPN junctions so we can work with positive voltages from the collector to the 

Emitter.  

RTL Logic Gate 

 

Figure 16: RTL AND Gate 



Figure 16 is our RTL logic gate that we are using for the MS3 building block. We continue to 

work on the AND logic gate verison of the RTL logic because it can be used to control our game 

logic in our game plan as well as states. The advantage of the RTL logic gate compared to our 

options is that it uses less transistors and it's simple to use. The RTL AND gate would be the 

same truth table of a regular and-gate where both inputs are HIGH in order for the output to be 

ON.  

Arduino Uno  

 

Figure 17: Arduino Uno 

Figure 17 is the arduino uno that is being used for the circuit as a way to store memory. Due to 

time constraints, we are unable to implement the necessary components like adding a bunch of 

flip flops. Arduino coding is programmed in c code (refer to the Appendix) and the 

documentation for how to use the arduino is in the references.  



Operation and Design 

Input Block 

 

Figure 18: Side Switch image (not the same switch but similar concept)  

Description 

The input for the system is a switch that the user will flip. When the switch is in the ON state, an 

output (voltage) will be at approximately 5V. When the switch is in the OFF state, the output will 

be at approximately 0V. 

Input/Output Plot 

Figure 19 and Figure 20 shows the voltage output from the switch within the entire circuit 

connected. 

When the switch is in the OFF state, we measure: 

 

Figure 19: Switch state: switch off 

When the switch is in the ON state, we measure: 



 

Figure 20: Switch State: switch on 

MS1 Building Block 1: Astable Multivibrator (MV) 

Schematic 

 

Figure 21: Isolated Astable Multivibrator 

Design Equation 

In a MV circuit, the feedback fraction  which is the voltage divider in the feedback loop is  β

given: 



 #(1) β =
𝑅

2

𝑅
1
+𝑅
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To elaborate, the output waveform's period is determined by the RC time constants of the two 

timing components, as well as the feedback ratio established by the R1, R2 voltage divider 

network, which sets the reference voltage . (𝑉
𝑠𝑎𝑡+

 & 𝑉
𝑠𝑎𝑡−

)
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If the positive and negative values of the amplifier's saturation voltage are the same magnitude, 

then V_sat+ = V_sat-,  then expression to calculate the period of oscillation becomes: 

 #(3) 𝑇 = 2𝑅𝐶 * 𝑙𝑛( 1+β
1−β )

Using equation #1, #2, and #3 to solve for the frequency of the MV results us to have our ideal 

value of: 

 β = 10𝑘
10𝑘+10𝑘 = 0. 5

     &          𝑉
𝑠𝑎𝑡+

= 0. 5(5𝑉) = 2. 5𝑉 𝑉
𝑠𝑎𝑡−

= 0. 5(− 5𝑉) =− 2. 5𝑉

 𝑇 = 2(10𝑘)(22µ𝐹) * 𝑙𝑛( 1+0.5
1−0.5 ) = 0. 48𝑠

 𝑓 = 1
𝑇 = 1

0.48𝑠 = 2. 08𝐻𝑧

Discussion of Component Choices  

We first started out by choosing a  value. For the sake of convenience, we used two  β 10𝑘Ω

resistors to get a  of 0.5. This gives us approximately 1.09, which simplifies the equation to β

 From here, we chose our R and C values to reach our target value of 2 Hz. We once again 
1

2.18𝑅𝐶

choose 10k to be our resistor value, and that leaves us with 22 F as our only available capacitor µ

choice. 



Input/Output Plot 

 

Figure 22: Astable Multivibrator Output 

In Figure 22, an MV doesn’t have an input voltage, so we will only show the output graph. As we 

can see, the MV is representing a square wave that is oscillating with a period of 0.38s with a 

amplitude of 3.5V.  

MS1 Building Block 2: Diode based AND-gate 

Schematic 

 

Figure 23: Diode Logic Gate Schematic 



V+ is 5V, the voltage we would like to supply when both inputs are high. IN1 and IN2 indicate 

our inputs, and ANDV is the output of interest. 

Design Equation 

The AND logic essentially multiplies the two inputs together. Assume that 5V equates to binary 

input 1 and 0V equates to binary input 0. These are the only two inputs to consider. 1 * 1 = 1, 

while all other sets of inputs = 0. When the output is 1, it will turn on the LED for our output 

stage.  

Discussion of Component Choices 

The 1N914 diodes were used because they were readily available and met our requirements of 

acting like a one way switch with some voltage drop. 

Input/Output Plot 

 

Figure 24: Input/Output of Diode Logic Gate 

When both inputs V+ and IN1 are high(5V), output ANDV rises to its high state. Currently, the 

high state is lower due to a voltage divider. This is a limitation of LTSpice, as we need something 

to be the load for accurate measurements. The output of the ANDV will serve for the LED stage 

on whether it's on or off.  



MS2 Building Block 1: CMOS based NAND-Gate  

Schematic 

Figure 25: SPICE Model of a NAND gate 

Design Equation 

There is no explicit math in regards to a NAND gate. The only design principle that must be 

followed is the truth table, which is as below. 

Table 1: NAND Gate input/output table 

Input 1 Input 2 Output 

LOW LOW HIGH 

LOW HIGH HIGH 

HIGH LOW HIGH 

HIGH HIGH LOW 



Discussion of Component Choices 

​ The ALD1015 Dual N-Channel and Dual P-Channel MOSFET was chosen, as it was the 

only accessible PMOS. The only other MOSFET we had readily available was the 2N7002, and 

this is exclusively a NMOS. 

Input/Output Plot 

Figure 26: Input/Output of the CMOS NAND gate  

Note how V(out) is only LOW when both inputs are HIGH, following the truth table of 

the NAND gate. (all inputs are 5V, just measured after a voltage divider for ease of viewing).  

 



MS2 Building Block 2: Electronic Switch  

Schematic 

 

Figure 27: Electronic Switch with 2N7000 NMOS  

Design Equation 

If Vswitch > Vth, the switch is on. If not, the switch is off. 

Discussion of Component Choices 

​ The only consideration for this is Vth. As long as Vth is lower than our logic HIGH, the 

circuit should work correctly. As most MOSFETS we have access to have a Vth of around 0.7, we 

selected the 2N7000 for this, as it is the most accessible and fulfills this requirement.  

Input/Output Plot 



 

Figure 28: Input/Output of the Electric Switch  

​ Note how as the switch gets toggled on, current begins passing through the load. 

MS3 Building Block 1: Oscillator 

Schematic 

 

Figure 29: SPICE Model of BJT Astable Multivibrator Oscillator 



Design Equation 

From the Figure, we can see that R3=R5 and C1=C2. Which means the total length of time of the 

Multivibrators cycle is given below for a symmetrical output waveform. 

 #(4) 𝑓 = 1
𝑇 = 1

1.38*𝑅𝐶

 #(5) 𝑇 = 1. 396 * 𝑅𝐶

Using the following equations, we can generate a continuous, oscillating square wave without 

requiring any external trigger.  

Using equations # to find its characteristics of the square wave:​

 𝑓 = 1

1.38*(33000Ω)(10*10−6𝐹)
= 2. 2 𝐻𝑧

 𝑇 = 1. 396(33000)(10 * 10−6) = 0. 461𝑠

Based on our frequency and the period, we can tell that our square wave will oscillate from 0V 

to 5V at a period of 0.461s.  

Discussion of Component Choices​

We first started out by choosing a value out for base resistor and collector resistor along with 

our capacitors. For the sake of convenience, we want our base resistor to be symmetrical as well 

as our capacitors, which we can have adjustable frequency by varying the values of the resistors 

and capacitors. As a result, since we want our target value of 2 Hz, so that the player has 1.5 

second to react, we decided that R= 33k ohms while the capacitor is  based on our 10µ𝐹

available components in the kit. 

Input/Output Plot 



 

Figure 30: Output of Astable Multivibrator 

Based on Figure 30 and our analysis for the characteristics of the square wave, you can see that 

our calculation matches with the simulation. The circuit is oscillating from 0V to 5V at a 

frequency of 2.2Hz or at a period of 0.454s based on lTspice which is really close to our 

calculation. 

 

MS3 Building Block 2: RTL Logic AND-Gate  

Schematic 

 

Figure 31: TTL AND-gate Schematic  

 



Design Equation 

There is no explicit math in regards to the AND gate, as the only design principle behind it is to 

follow the basic truth table logic of an AND gate. In written form, the AND logic essentially 

outputs a high value when both inputs are being detected, otherwise, the circuit will remain 

low.  

Discussion of Component Choices​

The same BJT 2N3904 was chosen due to its accessibility and readily available from the mercer 

lab. Since the TTL AND-gate input controls a multi-emitter transistor, each input is connected to  

one emitter of a single transistor where if any input is low, the transistor conducts, pulling the 

output low. A second transistor is used to invert the logic output where all inputs are HIGH, the 

transistor turns OFF, allowing the output to go HIGH. 

Input/Output Plot 

 

Figure 32: RTL AND Gate Ouptut  

The above simulation output follows the truth table below: 

Table 2: AND Gate truth table 

A B OUT 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 



 

 

Output Block: LED 

 

Figure 33: Example of a LED connected from an diode AND-gate 

Our output is an LED. The LED is connected to the diode AND-gate as shown above. For our 

math and output of the LED, refer to the Diode based AND-gate Figure 18 as it was explained 

there of how the logic worked. Based on the input of the diode AND-gate, when both of the 

desired inputs are true, then it would turn on the LED.  

Integration and Optimization for MS1 

Table 3: Inputs vs Outputs 

Switch Clock Signal Output Voltage 

ON High High 

OFF Low Low 

ON Low Low 



OFF High Low 

 

The first stage of our circuit is the slide switch that will connect to the diode AND-gate as one of 

its inputs. A side switch doesn't have anything too crazy about it other than having an on/off 

state which correlates to let through the signal pass through. The side switch has 3 pins where 

the first pin is the power, the last pin is ground, and the middle pin is the one that actually 

connects to the input of the diode AND-gate as previously discussed. In addition, the signal that 

goes out of the middle pin is a voltage.  

In the beginning stage, we originally planned to use a push button as our input stage. However, 

we later switched to a side-switch instead for the implementation. The reason is that the issue 

of the push button leads to the results to be inconsistent, which is why we made a decision for 

the demo and the project to be a side switch because the side-switch has a pin connection to 

ground, leading to results being consistent.  

The second stage of our circuit is the op-amp multivibrator. As discussed in section “Astable 

Multivibrator,” it will produce a voltage square wave signal (Vout) where the oscillation of the 

square wave can be used as a clock. For MS1, the MV will act as an individual source for the 

AND-gate to run for our game logic as mentioned before.  It is designed with bounds of -5V and 

5V in mind, but due to the limitations of the op-amp, it never quite reaches its saturation 

voltages. The 5V state is meant to be the logical high and the -5V state is meant to be logical 

low. With the op-amps imperfections and the load sapping some voltage, our current op-amp 

provides either 2.5V in its high state and -1V in its low state.  

Originally, this was designed to oscillate between 0V and 5V, but such bounds were difficult to 

establish with the op-amps inability to reach its saturation points. Setting  to 0V was only 𝑉
𝑠𝑎𝑡−

able to pull the voltage down to 1V, which still provided enough voltage to constantly feed the 

AND gate with a logical high. To simplify our design for the sake of time, we went back to the 

reference point of 0V, which required equivalent + and - magnitudes for saturation. We used 5V 

again to satisfy our logical high requirement. 



The third stage is the AND gate. To ensure that the AND gate was able to function well with both 

the slide switch and clock’s outputs, we defined clear bounds as what would constitute a high 

voltage and a low voltage. Only a high voltage would let through enough power to light the LED 

that indicated jumping. This value was 0.7V, equivalent to the voltage drop of the diode. Lower 

than 0.7V, the diode wouldn’t allow current to flow, effectively causing an open circuit. Above 

0.7V, current flows and the LED is lit. The clock outputs 2.5V during its high, and the switch 

provides 5V when it's on, easily clearing the 0.7V threshold established.  

Lastly, the final stage of our circuit is the LED from the output of the AND-gate configuration. 

Once the input  logic is true from the MV’s clock cycle on high and the side slide is on state, it 

will produce a Vout signal to the LED to indicate it is on, indicating that the event has been 

scheduled.  

 

Figure 34: Slide Switch On Input and Output  



Figure 25 shows the input vs output of our entire circuit while the slide switch is on. The purple 

line represents our input, a slide switch in the ON position providing 5V, and the orange line 

represents the output, the two possible states of our clock. While the slide switch is on, the 

output is exactly the clock. Figure 26 shows the input vs output of the circuit while the slide 

switch is off. In this configuration, the yellow and purple lines overlap, as both of them read 

ground, the reference voltage of 0V. 

 

Figure 35: Slide Switch Off Input and Output 

Integration and Optimization for MS2 

Table 3: Inputs vs Outputs 

D Switch Enable switch Output Voltage 

ON OFF PREVIOUS 

OFF OFF PREVIOUS 



ON ON HIGH 

OFF ON LOW 

 

The first stage of our circuit is the two slide switches that are connected to the NAND gates as 

inputs. One of the slide switches (D switch) is configured to be our main input, while the other 

switch is the enable. This stage outputs true if both D and ENABLE are switched off, and off 

otherwise. 

The second stage of our circuit is a second set of NAND gates, making a D Latch. The inputs to 

these NAND gates are the outputs of the previous NAND gates and its own output feedback as 

an input. This is represented by PREVIOUS in Table 3. The logic that the D Latch follows is shown 

in Table 3. As shown in the table, the D Latch will only change states when ENABLE is high. This 

creates a protected memory that is unalterable while we do calculations for the next game 

state. It ensures that state changes are invulnerable to noise and player inputs that may 

otherwise skew the state mid calculation. 

We originally planned to use a T flip flop as the memory option of choice. A T flip flop worked 

the best because it would constantly flop every rising clock edge. This works perfectly for our 

desired 00, 01, 10, 11 binary states. However, a T flip flop proved too challenging to create in 

the alloted time. The created T flip flop was able to change states, but did not properly pull all 

the way to the designated voltage values of 0V and 5V. To complete the milestone in the alloted 

time, we opted to create a much simpler D Latch. 

The third stage is an NMOS used as an Electronic Switch. This receives the signal out of the flip 

flop and uses it to open and close a voltage connection to an LED. The electronic switch will be 

used to automate the changing of inputs and outputs. By using a separate voltage source to 

power lossy components like resistors and LEDs that would otherwise drop voltage, we are able 

to keep the flip flop values at their logical high and low states of 0V and 5V. This ensures that 

our sequential logic will always have the same values to work with, whether it’s the first stage or 



the third. That way we can use the exact same layout for each of the stages, not needing to 

worry about minor differences in voltages or current. 

The final stage is the LED stage which corresponds to the output of Table 2. The LED lights 

represent the binary state of the bit the flip flop represents. The bits from multiple flip flops will 

be combined and mapped to different combinations of LEDs lighting up, indicating important 

information such as whether or not the player is jumping and where obstacles are.

 

Figure 36: Input/Output of MS2 stage 

As described in Table 3, V(q), our output, doesn’t change until V(clk_msr) is high even when 

V(d_msr) is. All voltages are 5V high and 0V low, they are probed with voltage dividers for visual 

clarity. The red line V(q) is the output. There are some slight changes as some of the internal 

NAND gates that make up the latch change when clock rises, but these changes are 

imperceptible on our normal circuit. 

Integration and Optimization for MS3 

The circuit begins with the clock. It bounces between a 5V high and a 0V low roughly every half 

a second,  which is in line with our 2 Hz target. Alongside this “clock,” there’s a button that you 

can push to indicate to the game that you wish to jump. Both the clock and the button feed into 

our memory unit, which is an Arduino. We intended for this to be a series of flip flops, but when 



we realized the number of flip flops we needed, we quickly gave up on the idea. We originally 

planned a flip flop per LED, meaning 3 flip flops, but we turned that into 2 flip flops after some 

truth table tinkering. The equations we ended up using can be seen in Table below.  

Table 4: LIght Sequence  

A B LED NO 

0 0 ALL LEDs OFF 

0 1 1 

1 0 2 

1 1 3 

 

Two flip flops seemed doable, but then we remembered we needed memory to know the 

previous state of the LEDs to know where the player stands in the game state diagram. That 

quickly ballooned it back up to 6 flip flops, way too many considering each flip flop took an 

entire breadboard. That’s where the Arduino came in. The Arduino allowed us to store the flip 

flop states as variables all in one convenient little board. It also served to provide signals to 

indicate the previous state to our decision making circuit. This decision making circuit was one 

of our RTL logic gates configured as an AND gate, where it and’ed whether or not you hit the 

jump button with if the 3rd light was on to decide whether or not you lost.  

We explored RTL logic gates using BJTs in order to ensure that we gave all the possible logic gate 

varieties a try. In MS1, we explored Diode logic, which we promptly replaced with CMOS logic in 

MS2 due to its extreme lossiness. Diode logic is old, found in the early days of mainframe 

vacuum tube based computing. The CMOS logic we explored in MS2 is the same used in the 

most cutting edge of computing technology today. They are able to be scaled incredibly small 

and packaged together into tiny chips with very little power draw. RTL logic bridges that gap, 

being smaller and more efficient than diode logic as it can go to the full reference voltages but 

still not as efficient as CMOS logic with its zero power draw unless switching. 

RTL logic worked like a charm in small quantities, but we soon discovered its main downfall: 

scalability. Because it used resistors, it lost voltage to heat. It needed constant level shifts to 



maintain its full signal strength throughout the logic sequence. A sequence of RTL logic gates 

also triggered the M1K’s infamous beeping, which signaled it was drawing too much current 

from it. And because BJTs were super sensitive to small differences in current, attaching a load 

was a nightmare. Even just placing in an LED would cause multimeters to read 0V output from 

the RTL gates, despite there somehow being enough power to light up the LED. 

Due to the issues with RTL logic, we ended up going back to CMOS logic in our final integration.  

 

Figure 37: Whole Circuit Output 

The output for our circuit is Figure 37. It shows how the sequence of lights LED1, LED2, and 

LED3 trigger one after the other, although the ordering and timing may be off due to LTSpices 

lack of a usable memory unit for analog devices 

Operating Conditions MS1 

Limitation 1:  

Flipping the switch too close to the clock’s falling edge will sometimes fail to trigger the jump 

LED despite the clock high LED indicating there is still time to do so. This is because the voltage 

is not entirely stable during the falling edge. The voltage from the astable multivibrator is falling 

at this time. The diode AND gate requires a high signal from the op-amp, while the clock high 

LED only requires some current, so the clock high LED can be lit without providing enough 

voltage for the AND gate to read logical high. 

Limitation 2: 

We can only have up to 3 stages of sequential logic with our current design. This is because 

diodes drop voltage. We designated 3.3V as our logical high to mimic that of popular 

microcontrollers like the STM32. With the ~0.7V drop that we observed, our 5V inputs can only 



be dropped 3 times before falling too low for our designated logical high. As we implement 

more complex logic into our circuit, we need to either rethink our logic gates or find a way to 

restore our voltage after every logic gate. 

Trade Offs: 

In the design of our op-amp multivibrator, we had to choose between precision and simplicity of 

design. A multivibrator with a higher frequency would allow us to run logic more often, but 

would also require additional circuitry to ensure that we’re only doing things every 2 ticks, 3 

ticks, etc. to keep the timing consistent. As this is the first time we are building a circuit that 

requires such tight synchronization, we decided that it's more important to focus on keeping 

things simple and making sure they work than adding all the features we want.  

Improvements: 

The first potential improvement is to the astable multivibrator. It should have a higher 

frequency. That way, we can implement things like making the game harder as time progresses 

by reducing the amount of time you have to react and jump. As of right now, each tick of the 

clock correlates to one change of state. But that doesn’t have to be the case. We can program it 

so that every 3 ticks changes the state, then 2, then 1 as you progress further and further into 

the game so the game continuously gets more difficult as time progresses. If time allows, we 

will try to implement this in future milestones. 

The second improvement is to try to replace the switch with a button. A button is much more 

intuitive than a switch. Currently, there are issues with the button as an unpressed button 

creates an open circuit. We need to ensure that when the button is not pressed, the reading is 

ground for a perfect 0V. With an open circuit, floating voltage can cause unintended effects as 

it’s neither a true logical low or logical high. We will continue to explore ways to implement this 

as we work through future milestones. 

Operating Conditions MS2 

Limitation 1:  

The circuit is very vulnerable to noise. If there is a sudden spike or drop of voltage at the very 

last second while the enable is high, the circuit will remain in that glitched state for the entire 



low period. While the inputs may change for the entire duration that enable is high, only the 

voltage when enable is low will be stored as memory. Noise from the power supply won’t be a 

very likely thing, but noise from the feedback loop will be. If you try to change the states right 

before enable goes low and the state change doesn’t finish, you’ll be stuck at a half-state. 

Limitation 2: 

The circuit is slow. This makes the flipping of states unsteady for a split second, not noticeable 

on our output LED, but we have noticed it in our oscilloscope measurements. This can cause 

issues with our feedback loop, which relies on the other NAND gate’s state to determine its 

own. While it has no effect now, if we were to increase the switching frequency we may run into 

issues with stability and making sure our logic properly pulls up and down to the 5V and 0V 

designated as logic highs and logic lows. To combat this, the clock that dictates the change in 

game states should be kept at a very low frequency to allow for the values to fully settle before 

changing again. 

Trade Offs: 

To maintain simplicity and fit our design onto one singular breadboard, we went with a D flip 

flop instead of a T flip flop. A T flip flop would better serve our purposes, as it always toggles 

when enabled. We want one flip flop that always triggers, and another that only triggers if the 

first flip flop was 1 the previous state. That way, we can easily set up 00, 01, 10, 11, reset as our 

values, which maps perfectly into the 4 possible states of our obstacles. A D flip flop can 

accomplish the same thing, but we need something to alter the D values every other clock cycle 

because it doesn’t do it by itself.  

Improvements: 

Due to time constraints, we made a latch instead of a flip flop. A very simple improvement 

would be to upgrade the latch into a flip flop by adding a slave latch that has the master latch’s 

output Q as its D. This simple change will help synchronizing things a lot by locking the states for 

longer periods of time. Right now, the state is only locked while enable is low. With a flip flop, 

the state is locked for all times except when enable is triggered.  



A second improvement would be to add capacitors to the supply and input voltages to help 

against sudden voltage spikes/drops. This way, we can guarantee consistent values without 

micro-fluctuations that could potentially chain together to cause unintended effects. Due to the 

sheer size, it’s very important to stop problems that are too small to care about otherwise as 

they could really build up after 10-20 sequences. 

Operating Conditions MS3 

Limitation 1:  

There is a chance for the analog reading to “float.” A floating voltage is a voltage that isn’t fully 

high or fully low. This occurs because the button isn’t grounded when it’s not pressed. Normally, 

floating voltages hang low, but sometimes if other parts of the system are really noisy, the 

floating values can spike into the territory designated for high values. We attempted to protect 

it by adding a resistor to pull down the voltage fully, but that means now the button voltage is a 

bit lower because it’s split with a resistor as well as the load. Because of the Arduino’s capability 

to dial in the thresholds on the field, we were ok, but we can run into issues from it when we 

start to exceed the amount that can fit onto an Arduino 

Limitation 2: 

The components in this milestone (BJTs, LEDs, resistors) all consume too much power. When 

loading the entire system, certain parts may not work as intended due to fluctuations in voltage 

and/or current as the M2K struggles to provide the demanded power. The current MOSFet as 

switch solution where we wired a separate power source to some higher demand components 

introduces small bits of delay that can add up as the game goes on. There have been instances 

where the LED’s state doesn’t line up with the actual states of the variables due to this delay.  

Trade Offs: 

In order to keep our project at a doable scale, we decided to pivot away from using flip flops 

and instead chose to use an Arduino. Flip flops would provide an entirely analog experience 

without floating values and would be much more in sync with the clock 



Improvements: 

The first improvement would be adding feedback to the game. There is no feedback to the 

game. You don’t know if the game just ended by accident or if you actually jumped over the 

obstacle because the obstacle disappears in front of you either way. Making the player a BiLED 

with a different death color or having LEDs behind the player so that the player can see the 

obstacle roll past them would help greatly with increasing the clarity of our game. It was not 

implemented due to the increased difficulty it would bring. With a BiLED, we would have to find 

a way to control both side’s voltages. With extra obstacle position LEDs, we would have to add 

even more memory variables. 

The second improvement would be to use a lower voltage. 5V was chosen because it was the 

maximum value the M2K boards could provide and we wanted to have as much power as we 

might need. However, we never needed that much power. In the future, we could redo this with 

as little as 3V, just enough to tip the MOSFETs we’re using. The lower power draw means we 

wouldn’t run into power issues and can access a larger suite of power hungrier options for our 

build. 

ABET DESIGN CONSIDERATIONS 

Because we are designing a simple game, we didn’t consider its impact on the public in our 

design choices. The Dinosaur Game project was intended to help us explore our curiosity in a 

field, not attempt to change the world for the better. The design process placed a heavy 

emphasis on power efficiency, as the sources we had easy access to simply didn’t provide much 

power. In that aspect, our game is environmentally conscious, choosing the least power hungry 

parts while still providing a solid experience. Our game was also designed safely, so that it won’t 

injure the player. But in the grand scheme of things, those considerations have no effect on 

society. 
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Appendix 
Code used: 

//global variables 

//ensures clock is only read once per up/down cycle 

int CLOCK_HI = 0; 

//lockout for jump 

int jumped = 0; 

//jump variable 

int jump = 0; 

//which LED was on in the previous state? 

int LED0 = 0; 

int LED1 = 0; 

int LED2 = 0; 

//trigger LED sequence 

int LED = 0; 

//game state 

int game = 1; 

//test 

int enable = 0; 

//score tracking 

int score = 0; 

 

void setup() { 

  // put your setup code here, to run once: 

 

  //pin declaration 

  //LIGHT0 



  pinMode(2, OUTPUT); 

  //LIGHT1 

  pinMode(3, OUTPUT); 

  //LIGHT2 

  pinMode(4, OUTPUT); 

  //JUMP 

  pinMode(5, OUTPUT); 

 

  Serial.begin(9600); 

} 

 

void loop() { 

  // put your main code here, to run repeatedly: 

  if(game == 1) { 

    //check for a high voltage value 

    int clockVolt = analogRead(A0); 

    int jumpVolt = analogRead(A1); 

    //Serial.println(jumpVolt); 

    //int testVolt = analogRead(A2); 

    //Serial.println(testVolt); 

 

    /*if(testVolt > 800) { 

      enable = 1; 

    } */ 

 

    if((jumpVolt > 800) & (jumped == 0)) { 

      jump = 1; //buffer jump for next cycle 



    } 

 

    if((clockVolt > 800) & (CLOCK_HI == 0)) { 

      //Serial.println("High"); 

      CLOCK_HI = 1; 

      onClockRise(); 

    } 

 

    if((clockVolt < 300) & (CLOCK_HI == 1)) { 

      //Serial.println("Low"); 

      CLOCK_HI = 0; 

      onClockFall(); 

    } 

  } 

} 

 

void onClockRise() { 

  Serial.println("HIGH"); 

  if(jumped == 1) { 

    //no longer safe 

    jump = 0; 

    digitalWrite(5, LOW); 

  } 

  if(jump == 1) { 

    //safe for a single cycle, locked out for 2 

    jumped = 2; 

    digitalWrite(5, HIGH); 



  } 

  //check LED2, then LED1, then LED0, then LED 

  if(LED2 == 1) { //code for when rightmost is on 

    LED2 = 0; 

    //turn off LED 

    digitalWrite(4, LOW); 

    if(jump == 0) { 

      game = 0; 

      Serial.println("You Lose!"); 

    } else { 

      score = score + 1; 

      Serial.print("SCORE: "); 

      Serial.println(score); 

    } 

  } 

  if(LED1 == 1) { //code for when middle is on 

    LED1 = 0; 

    LED2 = 1; 

    //change LED from middle to left 

    digitalWrite(3, LOW); 

    digitalWrite(4, HIGH); 

  } 

  if(LED0 == 1) { //code for when left is on 

    LED0 = 0; 

    LED1 = 1; 

    //change LED from right to middle 

    digitalWrite(2, LOW); 



    digitalWrite(3, HIGH); 

  } 

  if(LED == 8) { //code for triggering left 

    Serial.println("LIGHTED UP!"); 

    LED = 0; 

    LED0 = 1; 

    digitalWrite(2, HIGH); 

  } 

  /* if(enable) { //automatically trigger obstacle spawn 

    enable = 0; 

    LED0 = 1; 

    digitalWrite(2, HIGH); 

  } */ 

  

} 

 

void onClockFall() { 

  //cycle 1 is cycle jump is buffered for, cycle 2 is cycle after. locked 

  if(jumped > 0) { 

    jumped = jumped - 1; 

  } 

  LED = LED + 1; 

} 
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